Security has long been a top priority in the aeronautical industry, and Air Traffic Management (ATM), which refers to the entirety of systems and actions required to manage the movement of aircraft both on the ground and in the air, plays a major role in maintaining secure aeronautical transportation. In different phases of operations, a wide range of diverse facilities and devices need to communicate with each other. An important aspect of ATM is that it must be able to operate in all kinds of conditions, including outdoors, in harsh weather, and at remote sites, and all relevant data needs to be collected and monitored correctly and securely to maintain safe and stable operations.
Based on this brief introduction, we can conclude that the devices and components comprising an Air Traffic Management system must satisfy the following requirements:
A remote I/O system deployed at an airport can be used to acquire serial, digital, and analog data from runway lights, tower lights, and navigation aids, and then transmitted in real time to the control center. In addition, products that feature advanced remote I/O features and wide temperature operation are rugged enough to work 24/7 in all kinds of weather and harsh conditions to provide the non-stop operation demanded by airport operation codes.
SNMPv3 and SNMPv3 Trap are required. Since SNMP is a polling-based protocol, the control center can poll remote I/O status periodically via SNMP to make sure that all monitoring data is up-to-date. In addition, SNMP Trap can update data from remote sites to the control center actively. The user can set the threshold for the monitoring data and receive alarms immediately when preconfigured conditions are met. SNMP and SNMP Trap help ensure that status reports from airport facilities is always up-to-date and all emergencies can be handled promptly and properly.
With respect to security, SNMPv3 and SNMPv3 Trap support authentication and data encryption, making version 3 the most secure of all SNMP versions. The most popular encryption algorithm used by SNMP is MD5. However, since MD5’s security weaknesses can be exploited by hackers, cybersecurity experts suggest using a more secure algorithm, like SHA2, to protect sensitive information. Moxa’s modular remote I/O products support the SHA224 and SHA256 encryption algorithms, both of which belong to the SHA2 family.
The ioThinx 4510 Series is designed to collect I/O and serial data from field devices, and then convert the data into various Ethernet protocols, some for OT systems and some for IT systems. The product’s easy-to-use modular design, smart configuration functions, and device security features make data acquisition easy and straightforward.